Jet Physics at CDF

Outline

Overview

- ▶ Jet Production
- Jet Algorithms at CDF
- ▶ The Fermilab Tevatron
- ▶ The CDF Detector

Measurements

- Inclusive Jet Cross Section (Midpoint)
- ▶ Inclusive Jet Cross Section (k_T)
- Dijet Production
- ▶ *b*-jet Production
- ▶ bb Dijet Production
- Vector Boson + Jets Production
 - W + Jets
 - Z + Jets
 - W + $b\bar{b}$
 - Z + b Jets
 - W + charm

Conclusions

QCD Physics at the Fermilab Tevatron

- The Fermilab Tevatron Collider serves as an arena for precision tests of QCD with jets, W/Z bosons, and photons
 - ▶ Highest Q² scales currently achievable (searches for new physics at small distance scales)
 - Sensitivity to parton distributions over a broad kinematic range
- Data are compared to a variety of QCD calculations (NLO, resummed, leading log Monte Carlo...)

CDF High-Mass Dijet Event

Dynamics of any new physics will be from QCD...backgrounds to any new physics will be from QCD processes!

Jet Production

Jets are the experimental footprints of quarks and gluons!

- Jets are collimated sprays of hadrons originating from quarks/gluons from the hard scattering
- Unlike photons and leptons, jets must be defined by an algorithm for quantitative studies
- We need a well-defined algorithm that gives a close relationship between calorimeter-level jets, hadron-level jets, and parton-level jets

Jet Algorithms at CDF

Cone algorithms (JetClu, Midpoint)

- Cluster objects based on their proximity in y- ϕ (η - ϕ) space
- Starting from seeds (calorimeter towers/particles above threshold), find stable cones
 (p_T-weighted centroid = geometric center).
- In Run II QCD studies, often use "Midpoint" algorithm, i.e. look for stable cones from middle points between stable cones → Infrared safe to NNLO
- Stable cones sometime overlap
 - \rightarrow merge cones when overlap > 75%

k_T algorithm

- ► Cluster objects based on their relative transverse momentum (k_T)
- Iteratively cluster pairs of close objects until all objects become part of jets
- ▶ No issue of splitting/merging. Infrared and collinear safe to all orders of QCD.
- ▶ Successful at LEP & HERA, but relatively new at the hadron colliders
 - More difficult environment (underlying event, multiple pp interactions...)

soft parton emission changes jet clustering

The Fermilab Tevatron — Run 2

- Proton-antiproton collisions at $\sqrt{s} = 1.96 \text{ TeV}$
- Run 2 started in March 2001
- Delivered luminosity now > 3 fb⁻¹
- Projection ~6-7 fb⁻¹ by 2009

Collider Run II Integrated Luminosity

Collider Detector at Fermilab (CDF)

- ▶ Data taking efficiency ~ 85%
- ▶ About 2.7 fb⁻¹ on tape

Results shown here use up to 1.7 fb⁻¹

CDF — A Multi-purpose Detector

- Silicon vertex detector
- Central drift chamber (COT)
- Solenoid magnet
- ▶ EM and hadron calorimeters
- Muon chambers

Inclusive Jet Production

~8 orders of magnitude in cross section

- Test perturbative QCD predictions over
- \bigcirc Constrain QCD parameters (PDF, α_s)
- Potentially sensitive to new physics Probing distances ~10⁻¹⁹ m

Excitement (?) 10 years ago

Sizable cross section from quark-gluon subprocess

High-x gluon not well known...can be accommodated by the Standard Model

Forward Jet Measurement

- Forward jets probe high-x at lower Q^2 (= $-q^2$) than central jets
 - ▶ Q² evolution given by DGLAP
 - Essential to distinguish PDF and possible new physics at higher Q²
- Also, extend the sensitivity to lower x

Jet Energy Corrections

Measure calorimeter-level jets. Then, correct for:

- \bigcirc Energy from additional $p\overline{p}$ collisions
- Calorimeter non-uniformity
- Average energy loss and smearing effect in calorimeter energy measurement
 - ▶ Shower simulation tuned to data
- → Hadron-level jet cross section

To make fair comparisons with parton-level pQCD predictions, need to account for:

- Underlying event
- Madronization

Effects evaluated from simulated jet events. Underlying event in MC is tuned to data.

Inclusive Jets with Midpoint

- $L = 1.13 \text{ fb}^{-1}$
- Jets reconstructed with Midpoint algorithm, R = 0.7
- Consistent with NLO pQCD predictions
 - Experimental uncertainties dominated by jet energy scale (2-3%)
 - Theoretical uncertainties mainly from PDF (gluon at high x)

CDF Run II Preliminary (L=1.13 fb⁻¹)

(6% luminosity uncertainty not included)

Underlying Event & Hadronization

Inclusive Jet Production with Midpoint

- Data consistent with NLO pQCD predictions in all rapidity regions

 Experimental uncertainty in the forward region smaller than the PDI
 - Experimental uncertainty in the forward region smaller than the PDF
 - will contribute to further constrain PDFs

Inclusive Jets with k_T Algorithm

Again, data in good agreement with NLO pQCD predictions

Phys. Rev. D 75, 092006 (2007)

- $L = 1.0 \text{ fb}^{-1}$
- Jets reconstructed with the k_T algorithm, D=0.7.

D is the separation parameter which characterizes the size of the jets

Inclusive Jets with k_T vs. D

- Measurement with different D parameters
- Parton-to-hadron level corrections larger for larger
 D parameters (larger UE contributions)
- Both measurements in good agreement with NLO pQCD after UE and hadronization corrections

→ NLO pQCD provides a reasonable description of dependence on jet size.

Dijet Production

- Test of pQCD predictions
- Sensitive to new physics: decays of massive particles, compositeness

800

- Consistent with NLO pQCD predictions
 - Experimental uncertainties comparable to PDF uncertainties
 - Limits on new physics being worked out...

400

M_{ii} [GeV/c²]

1400

1200

1000

b-jet Production

- **b**-jets are signatures of many important and possible new physics processes.
- Understanding *b*-jet production has been a big challenge in QCD.
 - Only recently, data and theory started to show agreement; more precise measurements, fixed order + NLL, improved fragmentation function, PDFs

Leading order processes

Next-to-leading order processes

- Measurement on $b\overline{b}$ dijet production is sensitive to different production mechanisms:
 - Flavor creation at high $\Delta \phi$
 - Flavor excitation or gluon splitting at low $\Delta \phi$

b-jet Identification

The most commonly used "tagging" technique at CDF identifies b-jets with a displaced secondary vertex (long B hadron lifetime, $c\tau \sim 450 \mu m$)

- © consider tracks in η - ϕ cone of 0.4 around jet axis
- reconstruct secondary vertex from displaced tracks
- If the vertex has large transverse displacement (Lxy), the jet is "b-tagged"

$b\bar{b}$ Dijet Production

- \bigcirc b-jets selection using secondary vertex tagging both at the trigger and offline levels
- © Comparisons with LO MC (Pythia and Herwig) and NLO MC (MC@NLO with/without Jimmy for multiple parton interactions)

- MC@NLO reproduces data within errors (at low $\Delta \phi$, MC@NLO> Herwig > Pythia)
- Simulation of underlying event (Jimmy) improves data-theory agreement

Vector Boson + Jet Production

- Test of pQCD at high Q²
- Important for many physics searches

CDF Run II Preliminary Events/20 GeV 102 01 Data (Lum = 1.1 fb⁻¹) Z(μ μ)+jets Z(τ τ)+jets 10 ⊨ Z(v v)+jets 10-50 100 150 200 250 300 350 400 Missing E_⊤ [GeV] SUSY searches in the missing E_T + Jets channel

Major backgrounds

- \rightarrow Z \rightarrow vv + jets
- ► W \rightarrow lv + jets
- QCD, Top, WW...

Crucial to understand boson-jets production!

W + Jets Production

- Wevents selected with electron + missing $E_T(W \rightarrow ev)$
- Jets clustered with JetClu R=0.4 $E_T^{jet} > 15 \text{ GeV}$; $|y^{jet}| < 2$.
- Compare with matrix element + parton shower (ME+PS)
 Monte Carlo predictions
 - Special ME-PS matching (MLM, CKKW) to avoid double counting
 - Comparisons in shape only

Reasonable agreement with ME+PS MC predictions

... + parton showers

CDF Run II Preliminary

Z + Jets Production

- \bigcirc L = 1.7 fb⁻¹
- Z events selected with dielectrons
- Jets clustered with Midpoint algorithm R=0.7, $p_T^{jet} > 30 \text{ GeV}$; $|y^{jet}| < 2.1$.

Good agreement with NLO pQCD predictions

Z + Jets Production

$W + b\bar{b}$ Production

- Large background for many analyses
 - ▶ SM Higgs (WH) production
 - ▶ Single top quark production
 - ▶ *tt* production

In secondary-vertex-tagged sample, fit for light, c, b contributions.

$$\sigma(W^{\pm} \to b\overline{b}) \times \text{BR}(W^{\pm} \to \ell^{\pm}\nu) = 0.90 \pm 0.20 \text{ (stat.)} \pm 0.26 \text{ (syst.) pb}$$

$$(E_T^{\text{ jet}} > 20 \text{ GeV}, |\eta^{\text{jet}}| < 2)$$

Alpgen predictions: $(0.74 \pm 0.18 \text{ pb})$

Z + b Jets Production

Probe the less-well-known heavy flavor content of the proton. Important for

- Single top: $qb \rightarrow q't$ and $gb \rightarrow Wt$
- SUSY higgs: $gb \rightarrow hb$, $bb \rightarrow h$

Major background for SM Higgs searches (ZH, H $\rightarrow b\bar{b}$)

- $L = 1.5 \text{ fb}^{-1}$
- Z events selected with di-leptons (ee and $\mu\mu$).
- Jets clustered with a cone algorithm R=0.7
- b-jet identification: secondary vertex tagging

Z + b Jets Production

b, c and light fractions determined from the template fit of the secondary vertex mass distributions

$E_{T}^{\text{jet}} > 20 \text{ GeV}, \eta^{\text{jet}} < 1.5$ $R_{\text{jet}} = 0.7$	CDF Run II Preliminary measurement	PYTHIA	MCFM NLO	MCFM NLO + UE + hadr.
$\sigma(Z+b-jet)$	$0.94 \pm 0.15 \pm 0.15$ (pb)		0.51 pb	0.56 (pb)
$\sigma(Z+b-jet) / \sigma(Z)$	$0.369 \pm 0.057 \pm 0.055 \%$	0.35 %	0.21 %	0.23 %
$\sigma(Z+b-jet) / \sigma(Z+jet)$	$2.35 \pm 0.36 \pm 0.45 \%$	2.18 %	1.88 %	1.77 %

Data somewhat higher than NLO predictions. Theorists contacted for further investigation.

W + charm Production

- First measurement of the *Wc* production cross section!
- The technique uses soft muon flavor tagging, where we identify jets with a muon from the semileptonic decay of the candidate c-quark. (Jet $E_T > 10$ GeV)
- \bigcirc W events are selected with e/ μ + missing E_T (> 25 GeV)
- We study the charge correlation of the *W* boson with the muon. Candidate events are fully anti-correlated!

Number of events with at least one SLT-tagged jet:

	W + 1 jet	W + 2 jets
W → ev	725	360
$W \to \mu \nu$	491	246

W + charm Production

CDF II Preliminary

The Wc production cross section is obtained using:

$$\sigma_{Wc} = \frac{N_{\rm tot}^{OS-SS} - N_{\rm bkg}^{OS-SS}}{Acc \cdot \int L}$$
 backgrounds are W+light flavor non-W QCD Drell-Yan etc

Cross section measurement:

$$\sigma_{Wc} \times BR(W \to \ell\nu) = 28.5 \pm 8.2 \text{ (stat)} ^{+4.0}_{-4.3} \text{ (syst)} \pm 1.7 \text{ (lum) pb}$$

where $p_T(c) > 8 \text{ GeV/c}$ and $|\eta_c| < 3.0$ L = 1.8 fb⁻¹

Jay R. Dittmann / Baylor / CDF

Jet Physics at CDF

Workshop on Low x Physics — 1 September, 2007

Conclusions

CDF has a broad program on jet physics which is making a significant impact on better understanding of jet production mechanisms and QCD.

- Inclusive jets, dijets, bb dijets, boson + jets, boson + b-jets, W + charm
- Providing stringent tests of QCD calculations and further constraints on QCD parameters
 - ▶ NLO pQCD calculations, ME-PS matching techniques
 - Proton PDFs (especially high-x gluons)
- QCD processes often the most important background to electroweak and possible new physics processes
 - → Better understanding will enhance the potential for new physics discoveries at the Tevatron and also at the upcoming LHC!

I thank Ken Hatakeyama and Regis Lefevre (CDF QCD Conveners) for their kind assistance.